VISUAL STRUCTURAL INSPECTION REPORT
of
No. 22 Stella Maris, Knockmuldoney, Ballysadare, Co. Sligo,

for
Brid ******

Prepared by:
Colin Fidgeon BE (HONS), MIEI CEng
Chartered Engineer
Derrinweir, Drumkeeran, County Leitrim
Ph: 087 7973841

September 2016

EMAIL: colinfidgeon@gmail.com
WEBSITE: www.buildingsurveying.ie
CONTENTS:

1. INTRODUCTION ... 6
2. DESCRIPTION .. 6
3. SYNOPSIS .. 6
4. OBSERVATIONS ... 7
5. CONDITIONS OF ENGAGEMENT .. 42

Signed: Colin Fidgeon

Date: 06/09/2016
TERMS AND CONDITIONS
Any person who relies upon the contents of the inspection & report, does so acknowledging that the following clauses, which define the scope and limitations of the inspection, form an integral part of the report.

SCOPE OF REPORT
The inspection is visual only, in accordance with the ‘Code of Practice for Inspecting and Certifying Buildings and Works’ published by ‘The Department of Housing, Planning, Community and Local Government’, and is not intended as a certificate of compliance of the property within the requirements of any Act, regulation, ordinance or by-law, or, as a warranty or an insurance policy against problems developing with the building in the future.

Visual inspection is limited to those areas and sections of the property fully accessible and visible to the inspector at the time and on the date of Inspection. The inspection does not include breaking apart, dismantling, removing or moving objects including, but not limited to, foliage, mouldings, roof insulation/sarking membrane, floor or wall coverings, siding, ceilings, floors, furnishings, appliances or personal possessions. The Inspector cannot inspect inside walls, between floors, inside skillion roofing, inside the eaves, behind stored goods in cupboards, or other areas that are concealed or obstructed. The inspector does not dig, gouge, force or perform any invasive procedures. In an occupied property it must be understood that furnishings or household items may conceal defects which may only be revealed when the items are removed.

The report attempts to assist in judging a building according to its age and level of maintenance and in providing relative comparisons. The inspection and report should not be considered all-encompassing dealing with a building from every aspect. Rather it should be seen as a reasonable attempt to identify any significant defects apparent at the time of the inspection. Whether or not a defect is considered significant or not, depends, to a large extent, upon the age and type of the building inspected. It is unrealistic to expect comment on all minor defects or imperfections. Subject to the level of maintenance on the building it is common for the number of faults to have increased with age.

LIMITATIONS
Nothing contained in the report implies that any inaccessible or partly inaccessible areas or sections of the property being inspected were free from defects, latent or otherwise. No responsibility can be accepted for defects, which are latent or otherwise, not reasonably detected on a visual inspection without interference with or removal of any of the structure including fixtures or fittings within the building.

The report does not contain any assessment or opinion in relation to any item, which is the subject of a Special Purpose Property Report or any matter where the inspection or assessment of which is solely regulated by statute. Special Purpose Property Reports include comment on the following: Common property areas, environmental concerns such as sunlight, privacy, streetscape and views, proximity of property to flight paths, railways and busy traffic or other neighbourhood issues, noise levels, health & safety issues including the presence of asbestos or lead, heritage concerns, security or fire protection, analysis of site drainage apart from surface water drainage, swimming pools and spas, detection and identification of illegal and unauthorised building and plumbing work, durability of exposed finishes.

The report does not purport to be geological as to foundation integrity or soil conditions, nor does it cover the condition of electrical, plumbing, gas or motorised appliances. The operation of fireplaces, chimneys, alarm systems, intercom systems, electrical and mechanical appliances, air conditioning systems, smoke detectors, telecommunications cabling or systems, have not been tested and are the subject of a Special Purpose Property Report. As a matter of course, and in the interests of safety, all prospective purchasers should have an electrical report carried out by a licenced electrician.

The report is limited to (unless otherwise noted) the main structure on the site and any other building, structure or outbuilding specifically named within the report.
DISCLAIMER OF LIABILITY: No liability shall be accepted on account of failure of the report to notify any problems in any areas or sections of the subject property physically inaccessible for inspection, or to which access for inspection is denied by or to the inspector, including but not limited to any areas or sections so specified by the report.

DISCLAIMER OF LIABILITY TO THIRD PARTIES: The report is made solely for the use and benefit of the client named on the front of the report. No liability or responsibility whatsoever, in contract or tort, is accepted to any third party who may rely on the report wholly or in part. Any third party acting or relying on the report, in whole or in part, does so at their own risk.

Glass Caution: The window glazing does not comply with current glass safety standards. In the interests of safety, glass panes in doors and windows, especially in trafficable areas, should be replaced with safety glass or have shatterproof film installed.
DEFINITIONS

For the purpose of this inspection, the following definitions apply.

Good = The item or area inspected appears to be in sound condition without any significant visible defects.

Fair = The item or area inspected exhibits some minor defects, minor damage or deterioration and may require some minor repairs of maintenance.

Poor = The item or area inspected may be in a badly neglected state of repair, finished in an un-tradesman like manner or deteriorated due to age or lack of maintenance.

Above Average = All items and areas appear to be very well maintained and show good quality building work, finishes and fittings, when compared with structures of similar age and construction.

Average = There may be components requiring repair or maintenance consistent with dwellings of similar age or construction. There were no significant items or problems that were not consistent with dwellings of similar age or construction.

Below Average = The building and its parts are poorly maintained, show roughly executed workmanship, neglect or lack of repairs and maintenance. There may be repairs or defects leading to substantial repair or remedial work required.

Subfloor space = Space between the underside of a suspended floor and the ground.

Attic space / Roof void = Space between the roof covering and the ceiling immediately below the roof covering.

Site = Allotment of land on which a building stands or is to be erected.

Listing = Leaning, slanted or not plumb.

Reasonable Access = Only areas to which reasonable access is available were inspected. The *Code of Practice for Inspecting and Certifying Buildings and Works* defines reasonable access as areas where safe, unobstructed access is provided and the minimum clearances specified below are available, or where these clearances are not available, areas within the inspector's unobstructed line of sight and within arm's length. Reasonable access does not include removing screws bolts to access covers. Reasonable access does not include the use of destructive or invasive inspection methods nor does it include cutting or making access traps or moving heavy furniture, floor coverings or stored goods.

A 3.6 m ladder is considered generally reasonable for safe use by one operator during an inspection. Regardless of the ladder length, weight and size, safe use of ladder or safe access may mean that inspection of a roof, elevated platform or roof space is not possible in part, or at all, during an inspection and, in such circumstances, an inspector may recommend the use of special access equipment and that a further inspection be undertaken when a safe method of access is present.

Subfloor areas sprayed with chemicals should not be inspected unless it is safe to do so.

<table>
<thead>
<tr>
<th>Area</th>
<th>Access hole mm</th>
<th>Crawl space mm</th>
<th>Height m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof interior</td>
<td>400 × 500</td>
<td>600 × 600</td>
<td>Accessible from a 3.6 m ladder</td>
</tr>
<tr>
<td>Roof exterior</td>
<td>—</td>
<td>—</td>
<td>Accessible from a 3.6 m ladder placed on the ground</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

On 03/09/2016 from 9am to 7pm, Colin Fidgeon visually inspected No. 22 Stella Maris, Knockmuldoney, Ballysadare, Co. Sligo, for Brid ******. The purpose of the inspection was to assess the condition of the property, prior to purchase, and advise on any defects present. This report is prepared in accordance with the ‘Code of Practice for Inspecting and Certifying Buildings and Works’ published by ‘The Department of Housing, Planning, Community and Local Government’.

2. DESCRIPTION

The structure is a semi-detached one-storey house constructed in the late 1930s. The original dwelling has a suspended timber ground floor. The external and internal walls are solid concrete. These walls were shuttered and poured on-site. The roof is ‘cut-timber’ (i.e. not prefabricated trusses). The ceiling was formed using ‘tongue & groove’ pine boards. The ceiling timbers were ‘papered’ internally for aesthetics. The roof rafters were also boarded with ‘tongue & groove’ pine boards, with cement tiles over. This is a robust and durable form of construction.

An extension was constructed to the rear of the property. The ground floor is concrete. The external walls are solid blockwork with ‘dry-lining’ on the internal face. The partition walls are timber stud. The roof is flat concrete with bitumen water proofing externally. The extension is poorly designed & constructed, as outlined in the body of the report.

3. SYNOPSIS

Reports by ‘Colin Fidgeon Building Surveying’ comply fully with the ‘Code of Practice for Inspecting and Certifying Buildings and Works’, and are therefore thorough and detailed. Consequently, there is a risk that the reader may infer a property is in very poor condition, due to our report length, in comparison to reports by other inspectors in the North-West region. For this reason, the code recommends that all inspectors provide an indication of the condition of the property, relative to other properties on the market locally, which are of similar age and style. The quality and expense of interior decorating (e.g. floor tiles, bathrooms, kitchen, furniture, etc) is not considered when determining the condition of the building. The assessment of condition is based mostly on structural performance, the extent of current internal dampness problems, and long-term durability of architectural weathering details (e.g. parapet walls with flat roves and internal gutters, will likely fail sooner and allow driving rain to penetrate to the building interior, thus requiring more frequent maintenance). The building is overall in AVERAGE condition, when compared to buildings of similar age and style.

No precipitation fell during the inspection and the ground was generally dry.
4. OBSERVATIONS

Note the large sewer manhole shown by the arrow, directly adjacent the external wall of the extension. This manhole is directly over the sewer pipe. It is a combined sewer and ‘runs’ parallel to the roadway at the front of the property. Generally, the council will not permit construction of heavy structures (e.g. a single-storey house) within at least 2 metres (generally 3 metres) either side of the pipeline. The rear external wall of the extension was constructed directly over the pipeline. It is unlikely that planning permission was granted for this extension. The sewer will limit future development of the site. The cost of relocating the sewer, to permit further extension, will probably prove unfeasible. For this reason, the owner at no.23 said he extended his property to the East side. Notice that house no.23 is about 1.5m from the East site boundary, as shown on the next page.
Notice in the photograph below, that house no.23 was extended to the East side, and is about 1.5 metres from the site boundary fence, as shown by the arrow.
The previous owner-occupier ‘passed-away’ around 2010. Shortly before she ‘passed’, she moved into her daughter’s home because there was a heavy plumbing leak under the kitchen sink, directly adjacent the kitchen sink taps. This leak occurred during the period of heavy frost circa 2010. The water supply was then ‘turned-off’ at the stopcock, shown on the next page. Evidence of historical damp can be seen by the white mould growth inside the kitchen cupboard, shown in the photograph below. This heavy leak was never repaired.

The owner & I, ‘turned-on’ the water supply at the stopcock and quickly flooded the kitchen cupboard and floor. We immediately ‘turned-off’ the water supply, so it was not possible to test the operation of the house plumbing system. Only a visual inspection of the condition of the plumbing system was possible, as outlined on the proceeding pages.
The stopcock for the water supply is under the grate, shown by the arrow below.
Slightly elevated moisture levels were measured in the corner of the front South-West bedroom. These readings were taken at the location shown by the arrow, in the internal masonry wall. The kitchen sink is directly adjacent this location, on the opposite side of the wall. It is possible that the dampness around the kitchen sink is also responsible for the elevated moisture levels at this location.
There is heavy corrosion on the copper pipe & fittings beside the copper hot-water cylinder. Copper corrosion is generally green. There are several reasons corrosion can start in copper pipes. However, it is probable that there was a very minor leak between the copper pipe and the fitting, at the location shown by the arrow in the photograph below. Water may then have dripped slowly downward creating the long section of green copper corrosion. The corroded section should be replaced.
Many of the radiators have some corrosion. It would be prudent to replace all of the radiators during the planned refurbishment.
The section of bent copper pipe, shown by the arrow below, is corroded and should be replaced. The remainder of the copper pipes visible in the attic space are in relatively good condition.
The copper pipes visible through this access hatch in the living-room are in relatively good condition. The ground floor joists visible are in good condition.
There is a slightly elevated moisture content in the external rear living-room wall, at the location shown below. Externally, directly adjacent this damp patch, a concrete landing & steps was poured ‘tight’ against the wall. See the next page for a photograph of these external steps.
The concrete landing & steps were constructed to provide access to the extension. See the next page for a photograph of the crack/gap formed between the concrete landing & the original building.
This crack/gap between the concrete landing & the original building has probably formed due to minor initial foundation settlement. This crack provides an easy path for rainwater to enter the building & maybe the cause of the elevated moisture readings internally at this location. The crack should be wire-brushed and filled with flexible external mastic.
There are slightly elevated levels of moisture in the rear external wall of the rear bedroom, at the location shown by the arrow. This damp area coincides with the location of the external underfloor vent, as shown on the next page.
The location of the vent is obscured by the coal bunker in the photograph below. The vents in the external wall are necessary. The vents allow crossflow of air, under the suspended timber ground floor, from the front to the rear of the building. This airflow prevents a build-up of condensation on the floor timbers, hence preventing mould & fungal growth, which could ‘rot’ the timbers. The vents in this building are adequately detailed to limit the quantity of rainwater penetrating, so it may not be possible/practical to attempt to reduce the moisture level by modifying the vent.

However, the coal-bunker should be moved away from the building & a clear-zone of at least 1m, should be maintained around the building perimeter. The vegetation that has been allowed to grow over the original concrete footpath, should be removed to limit the quantity of rainwater retained adjacent the external building wall. Ideally, in the wet Irish climate, a concrete footpath should be formed around the perimeter of a building, & be directly adjacent the building. This footpath should slope slightly away from the building, to limit the possibility of rainwater ‘ponding’ on the ground directly adjacent the building.

If a new boiler is commissioned, it should be possible to position the boiler at least 1m from the building, again to limit the possibilities of rainwater entry. A plumber should be able to provide guidance on the practicality of placing a new boiler 1m from the building.

Only one underfloor vent is visible in this section of wall. As discussed above, the vent visible is behind the coal bunker. It is highly likely that a second original vent was covered by the construction of the concrete landing & steps for the extension.
There are salt deposits underneath the window sill of the front living-room wall. These salt deposits indicate the presence of penetrating damp. There are a number of possible sources of this penetrating damp. Externally, the eaves gutter has deteriorated significantly and will allow a large quantity of roof rainwater to fall to ground and penetrate the soil. This rainwater may then seep through to the foundations & rise up the concrete wall. See the next page for a photograph showing the condition of the guttering.
The eaves guttering is heavily deteriorated in two areas over the front living-room window. The entire guttering should be replaced. See next page.
The leaking water from the eaves gutters will fall to the grassed area. This grassed area will allow rainwater to penetrate the soil & foundations, and may subsequently rise through the concrete wall. It is best practice to provide a concrete footpath, at least 1m wide, around the building perimeter. This footpath should slope gently from the building to prevent rainwater ‘ponding’ & seeping into the soil adjacent the external walls.
This is the rear external wall to the extension. There are slightly elevated moisture levels at the location shown by the arrow. See the next page for an external view.
Again, it would be prudent to provide a concrete footpath around the building perimeter, to prevent rainwater permeation through the soil directly adjacent the building foundations.

Also, the eaves guttering should be replaced to ensure that leaking gutters do not create moist ground conditions directly adjacent the wall foundations.
The window frame in this rear external wall of the extension has significantly deteriorated. It has probably deteriorated because it is a painted softwood window frame. The window frames in the original building are teak. Again, this points to the relatively poor design and construction of the extension.
There is a slightly elevated level of moisture in this wall, indicated by the arrow, in the toilet room. This room is part of the original construction. An adjacent wall, is also damp, as shown on the next page.
This adjacent wall is also damp. Note the significant deterioration of the skirting board, due to this dampness. The shower is located on the opposite side of these damp walls. Localised dampness in internal walls is often the result of shower use. Frequently, when the shower is ‘in-use’, water may penetrate through minor gaps/cracks between the shower/bath unit & the wall/tiles. See the next page for a view from the shower side.
It is highly likely that water will penetrate the wall, at the location shown by the arrow. Water will accumulate on the horizontal portion of the bath edge, and seep through any minor cracks. Note that this area is not tiled, which is very poor practice. Also note that there is only very minor deterioration of the wall on this shower side, but this side may have been renovated relatively recently.

As this premises has not been occupied since 2010, it is also possible that the dampness is the result of rainwater penetration through the flat & stepped concrete roves, or the external wall crack, as discussed later.
The flat roof of the extension is not laid to an adequate drainage slope. This ‘ponding’ rainwater may cause dampness penetration, despite the bitumen roof covering, leading to deterioration of the concrete roof.
There is a significant vertical crack in the wall at the junction of the extension with the original building, as shown by the arrow below. See the close-up on the next page.
This crack was previously repaired, but has opened again. The crack should be filled to prevent rainwater ingress.
Note the ‘step’ in the flat concrete roves, shown by the arrow below. This ‘step’ is directly over the damp internal walls & shower area. The lower concrete flat roof is part of the original structure, & the higher concrete flat roof is an extension. It is possible, given the general poor design & construction of the extension, that rainwater is not adequately drained from this area, & may penetrate to the internal walls below.

The guttering should all be replaced in this location. Gutter should be laid to a slight slope for quick drainage, & generation of self-cleansing velocity. This slight slope should be imperceptible to the untrained eye, and should not detract from the building aesthetics.
All of the windows in the original building have teak frames. All the windows are very difficult to open & close, due to teak swelling & binding.

The windows are single glazed. It would be prudent to install double glazing, during the planned refurbishment, to save on heating costs. Double glazing also prevents condensation forming on the internal side of the window glass.
The roof of the original building is designed & constructed to a high standard. Note the ‘tongue & groove’ boarding under the concrete roof tiles.

There is no ceiling insulation over most of the ceiling area. Installation should be installed as part of the planned refurbishment to provide a comfortable living environment & save on heating costs.
According to the vendor, Mary Fergus, the oil tank was emptied upon request of the insurance company, as the premises was unoccupied.
Both chimneys, shown by the orange arrows below, were upgraded as part of renovation works to the neighbouring property, no.21. It would be prudent to upgrade the third chimney during the planned renovation works. See the close-up on the next page.
A close-up of the chimney to the living-room of no. 22. Note the crack in the external cement render, shown by the arrow below. Rainwater may penetrate through such cracks and cause dampness internally. The chimney pots are broken & should be replaced. Also, the top horizontal surface of the chimney stack should be gently sloped to prevent rainwater ‘ponding’ & subsequent penetration to the masonry below. However, there is currently no evidence of internal dampness at this location internally.
A second timber shed was located in this grassed area. The shed foundations are still present, so the area was never landscaped. The steel pole, indicated by the arrow, was merely a doorstop for the shed door.
According to the vendor, Mary Fergus, the gas cylinder was removed upon request of the insurance company, as the house was unoccupied.
The kitchen ceiling paper has detached from the ‘tongue & groove’ ceiling timber boards underneath. The paper probably detached due to the steam created from cooking in the kitchen. However, the ‘tongue & groove’ ceiling boards are in good condition.

Due to the apparent age of the electrical equipment, it would be prudent to redo all electrical wiring during the planned refurbishment. It was not possible to test the electrical system, as the electricity company have disconnected the supply at the internal fuse-box.

The phone was also disconnected.
5. CONDITIONS OF ENGAGEMENT

This survey and report was undertaken under the conditions of engagement Agreement RA9101 for the Appointment of Consulting Engineers for Report and Advisory Work Published in agreement with Engineers Ireland.